
A data reduction pipeline for SHOC:
Manual

Marissa Kotze

June 26, 2013

Abstract

The Sutherland High-speed Optical Cameras (SHOC) have become
the more frequently used high-speed photometry instruments on the
0.75 m, 1.0 m and 1.9 m. The one aspect that has not been addressed
during their commissioning phase is the availability of on-the-fly data
reduction software, similar to what is available for UCT CCD and the
SAAO CCDs (STE3 and STE4). While this was not considered part
of the requirements for commissioning, the users of the instruments
do have the expectation for such functionality.

In the absence of more formal software, I am prepared to share
the pipeline I developed for my own observations, which have been
expanded to include functionality that other users may require. The
pipeline does not only allow a quick-look of lightcurves which may
be useful at the telescope, but also the extraction of suitable quality
photometry when run in the more comprehensive mode.

The process is driven by PYTHON scripts that may be run on
the servers (ASTRO/LTSP-SUTH). It facilitates the correction of the
FITS headers (PyFITS), running IRAF photometry tasks (PyRAF),
extraction of raw and differential lightcurves and plotting (GNUPLOT).

1 Introduction

The SHOC instruments create FITS data cubes during the observation of a
kinetic series. Each extension contains only an image while the single FITS
header is applicable to the entire cube itself. One may therefore either create
appropriate FITS headers for each extension and reduce the cube as a whole
or split the cube into individual FITS files and update their headers with the
correct information for each FITS image. I have elected to do the latter.

1



As described in the SHOC User manual, data cubes may only be copied
from the SHOC computer to the storage facility on the server once a cube
has been completed. Thereafter the user may copy the data to their own
/home/ directory on the server where they are free to run the data reduction
pipeline provided in SHOCpipeline.tar1 (which should be extracted there).
The README contains instructions for running the scripts.

2 SHOCpipeline.py

This PYTHON script facilitates the following:

• corrects header info (target and filters) as input by the user

• populates timing headers (UT, JD and HJD)

• bias-corrections (including making master bias files)

• flat-fielding (including making master flat files)

• warns the user if any of the pre-reductions couldn’t be done, but allows
continuation of the process to produce a quick-look results

• finds all sources above a threshold OR uses an input file for positions

• does aperture-corrected photometry

• plots all raw extracted lightcurves

It sets up 3 LINUX scripts (SHOCscript, PHOTscript and PLOTscript)
which may be rerun separately if needed. It also updates the headers FRAME,
EXPOSURE, ACT, KCT and TRIGGER with the user input in the event of
externally (GPS) triggered observations (TRIGGER = External). The RON
(readout noise) and SENSITIVITY headers (if absent) are extracted from the
instrument documentation 2. The GAIN header for the Conventional mode
is updated with the value of the SENSITIVITY header. For observations in
the Electron Multiplying mode, the GAIN and RON headers are divided by
the EM gain value (originally stored in GAIN). See Appendix A.

Multiple cubes can be reduced together if they were observations of the
same target using the same filters. Raw bias and flat files (in the same filter)
may be included in the reduction, or in their absence the master flat and bias
files may be used if they are available. The user will be allowed to continue
even if they are absent, but on-screen warnings will remind the user of it.

1http://www.saao.ac.za/∼marissa/SHOCpipeline/
2http://shoc.saao.ac.za/Documentation.html

2



2.1 Flow Chart of SHOCpipeline.py

3



2.1.1 Flow Chart of SHOCscript

4



2.1.2 Flow Chart of PHOTscript and PLOTscript

5



2.2 SHOCscript

This LINUX script runs all the necessary pre-reduction PYTHON scripts.
It splits the data cubes, populates all the timing related fits headers, makes
master flats and master biases, and finally flat-fields and bias-corrects science
frames. These reduced fits files are then stored in the ReducedData folder.

2.2.1 slice.py

This PYTHON script uses PyRAF to run the IRAF images, imutil task
imslice to split the data cubes into the individual fits files.

2.2.2 frametime.py

This PYTHON script uses PyFITS to populate the start times of exposures
(UTC) in the FITS files. For internally triggered (TRIGGER = Internal)
observations the time stored in the FRAME header is the end of the first
exposure in the cube. All subsequent frames follow at increments of ACT or
KCT (Integration cycle time = exposure time + readout time) thereafter.

For externally triggered observations (TRIGGER = External), the first
two frames in a cube are deleted. The user entered the start time of the cube
(CS) and GPS triggering time (dT), so the FRAME and EXPOSURE (also
ACT and KCT) fits headers could be corrected (setting TRIGGER = GPS).
In general the start time for frame number n = CS + (n-2)dT.

2.2.3 Set Airmass JD HJD.py

This PYTHON script uses PyRAF to run the IRAF astutil tasks asthedit
and setjd to populate the AIRMASS, JD and HJD headers (to 8 decimals).
It uses an input file saao.dat that contains all the site information.

2.2.4 MasterFlats.py

This PYTHON script uses PyRAF to run the IRAF images, immatch,
imutil tasks imcombine to average all raw flat frames and imarith to
normalize the master flat respectively.

2.2.5 MasterBias.py

There is no over-scan region on the SHOC CCDs, so users need to take
raw bias frames if bias-corrections are required. This PYTHON script uses
PyRAF to run the IRAF images, immatch, imutil task imcombine to
average all raw bias frames.

6



2.2.6 BiasCorrection.py

This PYTHON script uses PyRAF to run the IRAF images, immatch,
imutil task imarith to subtract the appropriate master bias file from all
the science frames.

2.2.7 FlatFielding.py

This PYTHON script uses PyRAF to run the IRAF images, immatch,
imutil task imarith to divide all the science frames by the appropriate
master flat file.

2.3 PHOTscript

This LINUX script runs the PYTHON script for the photometry tasks.

2.3.1 Photometry.py

Unless a user provides a text file (to be named windows) which contains the
initial X and Y coordinates of each source (one source per line) that should
be extracted, this PYTHON script will use PyRAF to run IRAF noao,
digiphot, daophot task daofind with parameters datapars and findpars
to determine the positions of all sources detected above the threshold set by
the user. The PYTHON script construct windows.py will automatically
be executed if >10 sources are detected, allowing elimination of sources close
to the edge or each other.

Lightcurves may be extracted successfully from unguided and/or poorly
tracked observations, where there is significant drift from initial positions.
Since positions then need to be re-determined for each frame, the run-time
is longer and supplying a windows file is irrelevant.

Instrumental magnitudes are extracted by the IRAF noao, digiphot,
daophot task phot with parameters datapars, centerpars, fitskypars
and photpars. Important parameters may be altered in the parameters
input file, which initially contains default values, that has been copied to the
working directory where the reductions were performed. It specifies a list
of apertures to facilitate aperture-corrected photometry, but the user may
specify any number of suitable apertures there, alter the inner and outer
radii of the annular sky region surrounding the source, size and allowable
shift of centroid box, as well as the maximum permitted magnitude error.

Aperture-corrected photometry is performed by the IRAF noao, digiphot,
photcal task mkapfile, extracting the magnitudes for the smallest apertures
that maximize the signal-to-noise (the turn-over in the curve of growth).

7



Should the curve of growth fail to converge, this PYTHON script may be
rerun with the option of dumping the dataset on-screen so that the user may
investigate which sources and/or apertures should be eliminated.

2.4 PLOTscript

This LINUX script runs the PYTHON scripts for extracting and plotting the
raw lightcurves.

2.4.1 extract lcs.py

This PYTHON script will extract the lightcurves for all sources that were
detected on the frame that the user specifies (usually the first one). If a
windows file exists, only lightcurves for the sources specified therein will be
extracted. The maximum frame-to-frame drift is set in the parameters file.

2.4.2 plot lcs.py

This PYTHON script generates GNUPLOT scripts to plot lightcurves on
comparable scales. The user specifies the magnitude range for the plots and
source numbers and initial coordinates are included on the plots to enable
to user to identify the target and suitable comparisons immediately. The
plots are saved in EPS format and the GNUPLOT scripts are also retained
to enable the user to alter them manually if desired.

3 Differential Photometry

An additional PYTHON script is available to extract the differential lightcurve
of the target by specifying any number of suitable comparisons.

3.1 plot differential lcs.py

This PYTHON script runs all the necessary scripts to produce differential
lightcurves. The user specifies the number of the target and also the num-
bers of any number of suitable comparisons. The previous task would have
displayed the extracted sources (numbers, coordinates, average magnitudes
and optimal apertures), but those are also available on the plots of the raw
lightcurves and in the coordinates* output file.

8



3.1.1 extractSTAR SHOClc.py

This PYTHON script will be called for the target with all the specified com-
parisons. It will also be run for each comparison individually with itself and
the rest of the comparisons as its comparison stars. Differential lightcurves
for the target and the comparisons are then plotted by plot lcs.py, so that
the user may verify the suitability of the comparisons.

4 QuickLook.py

This PYTHON script allows the user to skip past the more time consuming
pre-reductions such as bias-correction and flat-fielding and extract quick-look
raw lightcurves to get an indication of source variability and data quality.
Note that the HJD timing and airmass headers will not be populated for the
QuickLook scenario, to expedite the process.

It also automatically executes SHOCscript, PHOTscript and PLOTscript.
The plots of the raw lightcurves should normally suffice for a quick-look.
Should the user require differential lightcurves to assess the variability of the
target, the differential photometry PYTHON script (previous section) should
be run after completion of this process.

Note: If the user wishes to rerun the photometry with different parameters
for quick-look purposes, it is clearly not necessary to run SHOCscript again,
but only PHOTsscript and PLOTscript.

5 Conclusion

The README included with the code explains how to execute the scripts
and on-screen prompts lead the user through the process. It was therefore
kept brief, while this document aims to elaborate on the functionality and
working of the pipeline, without becoming overly bogged down in detail that
may be better discerned from the code itself. The code has been extensively
commented. IRAF’s online help should be consulted regarding IRAF tasks.

On-screen comments have been added to keep the user abreast of the
progress as tasks are executed. They are also useful if you want to rerun
part of the process. So KEEP AN EYE ON THE SCREEN.

Sufficient quality lightcurves may be produced if parameters are chosen
carefully and pre-reductions are done properly. It is assumed that the user
understands the principles of photometry and that the user will redo the
photometry properly (by using SHOCpipeline.py or other means) and not
publish quick-look results generated by this pipeline.

9



6 Tips

Inexperienced users should run the QuickLook.py on single data cubes,
rather than lists of cubes. Setting inappropriate parameters for the observed
field will result in poor quality lightcurves and possibly a failure to perform
aperture-corrected photometry. Users may specify a single aperture in the
parameters file and may also provide a windows file with the X and Y
coordinates of the relevant sources to speed up the process.

7 Feedback

Having used the UCT and SAAO CCD software extensively, I aimed for a
similar type of solution for SHOC using PYTHON. Essentially the pipeline
just serves as a way to get your IRAF tasks run automatically and visualise
the results of those efforts effectively.

This is by no means the final solution, but it works well for me. I tried
to also include additional functionality other users may need. But since its
still under development, you should always download the latest code3 at the
start of your observing run. Let me 4 know if something is not catered for
and I can see about including it. Emails reporting errors should include the
error that appeared on screen and the name(s) of the relevant data cube(s).

8 Troubleshooting

• Follow the instructions in the README carefully.

• The code was developed for use on the LTSP-SUTH and ASTRO
servers and are not supported on any other platform.

• PERMISSION errors: inform the IT helpdesk.

• If you have low signal-to-noise (S/N) observations, you may not be
able to get a convergence of the curve-of-growth unless the data is first
bias-corrected. Alternatively, you may supply a windows file with the
coordinates of the relevant sources and specify an appropriate single
aperture for them in the parameters file. The latter option results in
poorer quality lightcurves, but may suffice as a quick-look.

3http://www.saao.ac.za/∼marissa/SHOCpipeline/SHOCpipeline.tar
4marissa@saao.ac.za

10



A Appendix - FITS headers

The FITS headers created by SHOC are extremely basic, lacking target info
(OBJECT, RA, DEC, EPOCH), site info (OBSERVAT) and other important
info (FILTER, TELESCOP, INSTRUME). Headers (or comments) are often
not populated as expected and/or values may be incorrect or inappropriate.
Don’t blindly trust the raw data headers.

FITS headers of the data cubes are corrected by SHOCpipeline.py as
far as possible. If data cubes are too large (> 9000 256x256 frames), their
fits headers cannot be corrected. Reduced data headers are always corrected.

A.1 EM mode with Internal triggering (raw)

SIMPLE = T / file does conform to FITS standard

BITPIX = 16 / number of bits per data pixel

NAXIS = 3 / number of data axes

NAXIS1 = 256 / length of data axis 1

NAXIS2 = 256 / length of data axis 2

NAXIS3 = 10000 / length of data axis 3

EXTEND = T / FITS dataset may contain extensions

COMMENT FITS (Flexible Image Transport System) format is defined in ’Astronomy

COMMENT and Astrophysics’, volume 376, page 359; bibcode: 2001A&A...376..359H

BZERO = 32768 / offset data range to that of unsigned short

BSCALE = 1 / default scaling factor

HEAD = ’DU8201_BV’ / Head model

ACQMODE = ’Frame Transfer’ / Acquisition mode

ACT = 0.20676 / Integration cycle time

KCT = 0.20676 / Kinetic cycle time

NUMACC = 1 / Number of integrations

NUMKIN = 10000 / Series length

READMODE= ’Image ’ / Readout mode

IMGRECT = ’1, 1024, 1024, 1’ / Image format

HBIN = 4 / Horizontal binning

VBIN = 4 / Vertical binning

SUBRECT = ’1, 1024, 1024, 1’ / Subimage format

DATATYPE= ’Counts ’ / Data type

XTYPE = ’Pixel number’ / Calibration type

XUNIT = 0 / Calibration units

TRIGGER = ’Internal’ / Trigger mode

CALIB = ’0,1,0,0 ’ / Calibration

DLLVER = ’4.18.30004.0’ / Software Version

EXPOSURE= 0.2 / Total Exposure Time

TEMP = -68.863 / Temperature

11



READTIME= 3.333333E-07 / Pixel readout time

OPERATN = 4 / Type of system

GAIN = 70 / Gain

HIERARCH EMREALGAIN = 1 / EM Real Gain

VCLKAMP = 0 / Vertical Clock Amplitude

VSHIFT = 6.5E-06 / Vertical Shift Speed

OUTPTAMP= ’Electron Multiplying’ / Output Amplifier

PREAMP = 4.9 / Pre Amplifier Gain

SERNO = 5982 / Serial Number

UNSTTEMP= -999. / Unstabilized Temperature

BLCLAMP = F / Baseline Clamp

PRECAN = 0 / Prescans

FLIPX = 0 / Horizontally Flipped

FLIPY = 0 / Vertically Flipped

HIERARCH COUNTCONVERTMODE = 0 / Count Convert Mode

HIERARCH COUNTCONVERT = 0 / Count Convert

HIERARCH DETECTIONWAVELENGTH = 500. / Detection Wavelength

HIERARCH SENSITIVITY = 0. / Sensitivity

HIERARCH SPURIOUSNOISEFILTER = 0 / Spurious Noise Filter Mode

HIERARCH THRESHOLD = 0. / Threshold

HIERARCH PHOTONCOUNTINGENABLED = 0 / Photon Counting Enabled

HIERARCH NOTHRESHOLDS = 0 / Number of Photon Counting Thresholds

HIERARCH PHOTONCOUNTINGTHRESHOLD1 = 0. / Photon Counting Threshold 1

HIERARCH PHOTONCOUNTINGTHRESHOLD2 = 0. / Photon Counting Threshold 2

HIERARCH PHOTONCOUNTINGTHRESHOLD3 = 0. / Photon Counting Threshold 3

HIERARCH PHOTONCOUNTINGTHRESHOLD4 = 0. / Photon Counting Threshold 4

HIERARCH AVERAGINGFILTERMODE = 0 / Averaging Filter Mode

HIERARCH AVERAGINGFACTOR = 1 / Averaging factor

HIERARCH FRAMECOUNT = 1 / Frame Count

USERTXT1= ’ ’ / User text

USERTXT2= ’ ’ / User text

USERTXT3= ’ ’ / User text

USERTXT4= ’ ’ / User text

DATE = ’2012-12-17T19:27:50’ / file creation date (YYYY-MM-DDThh:mm:ss)

FRAME = ’2012-12-17T19:27:50.000’ / Start of Frame Exposure

END

A.1.1 The following corrections are required to it

The correct comment for FRAME is “End of 1st Exposure in Data Cube” and
while it appears to be capable of displaying fractions of seconds, it doesn’t.
Subsequently the absolute timing is not sub-second accurate unless the ob-
server used the Externally triggered (GPS) mode.

12



The header RON (Read-out Noise) is obtained from the specification sheet
and so is the SENSITIVITY header (if it is 0). If GAIN is 0 it is replaced
by 1, but if it is > 1 the RON and GAIN values are to be divided by it.

A.2 Conventional mode with GPS triggering (raw)

For the GPS triggered timing mode the FRAME and EXPOSURE headers
are completely unreliable and should be replaced by the values the user is
prompted to input. The user must make a note of these when beginning an
observation triggered by the GPS. There is presently NO way to determine
these values after the fact if the user did not keep record of it. The SHOC
user manual clearly specifies that this responsibility rests solely with the user!

SIMPLE = T / file does conform to FITS standard

BITPIX = 16 / number of bits per data pixel

NAXIS = 3 / number of data axes

NAXIS1 = 128 / length of data axis 1

NAXIS2 = 128 / length of data axis 2

NAXIS3 = 14000 / length of data axis 3

EXTEND = T / FITS dataset may contain extensions

COMMENT FITS (Flexible Image Transport System) format is defined in ’Astronomy

COMMENT and Astrophysics’, volume 376, page 359; bibcode: 2001A&A...376..359H

BZERO = 32768 / offset data range to that of unsigned short

BSCALE = 1 / default scaling factor

HEAD = ’DU8201_BV’ / Head model

ACQMODE = ’Frame Transfer’ / Acquisition mode

NUMACC = 1 / Number of integrations

NUMKIN = 14000 / Series length

READMODE= ’Image ’ / Readout mode

IMGRECT = ’1, 1024, 1024, 1’ / Image format

HBIN = 8 / Horizontal binning

VBIN = 8 / Vertical binning

SUBRECT = ’1, 1024, 1024, 1’ / Subimage format

DATATYPE= ’Counts ’ / Data type

XTYPE = ’Pixel number’ / Calibration type

XUNIT = 0 / Calibration units

TRIGGER = ’External’ / Trigger mode

CALIB = ’0,1,0,0 ’ / Calibration

DLLVER = ’4.18.30004.0’ / Software Version

EXPOSURE= 1.0E-05 / Total Exposure Time

TEMP = -58.479 / Temperature

READTIME= 1.0E-06 / Pixel readout time

OPERATN = 4 / Type of system

13



GAIN = 0 / Gain

HIERARCH EMREALGAIN = 1 / EM Real Gain

VCLKAMP = 0 / Vertical Clock Amplitude

VSHIFT = 6.5E-06 / Vertical Shift Speed

OUTPTAMP= ’Conventional’ / Output Amplifier

PREAMP = 2.4 / Pre Amplifier Gain

SERNO = 5982 / Serial Number

UNSTTEMP= -999. / Unstabilized Temperature

BLCLAMP = F / Baseline Clamp

PRECAN = 0 / Prescans

FLIPX = 1 / Horizontally Flipped

FLIPY = 0 / Vertically Flipped

HIERARCH COUNTCONVERTMODE = 0 / Count Convert Mode

HIERARCH COUNTCONVERT = 0 / Count Convert

HIERARCH DETECTIONWAVELENGTH = 500. / Detection Wavelength

HIERARCH SENSITIVITY = 0. / Sensitivity

HIERARCH SPURIOUSNOISEFILTER = 0 / Spurious Noise Filter Mode

HIERARCH THRESHOLD = 0. / Threshold

HIERARCH PHOTONCOUNTINGENABLED = 0 / Photon Counting Enabled

HIERARCH NOTHRESHOLDS = 0 / Number of Photon Counting Thresholds

HIERARCH PHOTONCOUNTINGTHRESHOLD1 = 0. / Photon Counting Threshold 1

HIERARCH PHOTONCOUNTINGTHRESHOLD2 = 0. / Photon Counting Threshold 2

HIERARCH PHOTONCOUNTINGTHRESHOLD3 = 0. / Photon Counting Threshold 3

HIERARCH PHOTONCOUNTINGTHRESHOLD4 = 0. / Photon Counting Threshold 4

HIERARCH AVERAGINGFILTERMODE = 0 / Averaging Filter Mode

HIERARCH AVERAGINGFACTOR = 1 / Averaging factor

HIERARCH FRAMECOUNT = 1 / Frame Count

USERTXT1= ’ ’ / User text

USERTXT2= ’ ’ / User text

USERTXT3= ’ ’ / User text

USERTXT4= ’ ’ / User text

DATE = ’2012-06-12T22:32:01’ / file creation date (YYYY-MM-DDThh:mm:ss)

FRAME = ’2012-06-12T22:32:01.000’ / Start of Frame Exposure

END

A.2.1 The following corrections are required to it

FRAME and EXPOSURE headers are populated by the values the user has
to supply when SHOCpipeline.py is run, whether it was run explicitly by
the user or automatically when running QuickLook.py. The TRIGGER is
updated to GPS once those header values have been corrected. The GAIN
value is replaced by the value of the SENSITIVITY header.

14


